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Classical kinetical Bose gas
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An autocatalytic reaction combined with spontaneous creation and annihilation processes of particles are
studied in a quantum formalism of the master equation in a lattice gas representation with unrestricted occu-
pancy. In case the system is activated by a linear coupling to a heat bath the problem can be solved exactly and
the stationary particle density follows the Bose distribution. The relation to spin-flip processes with a restricted
occupancy is discussed. Different from those processes the relaxation time and the density fluctuation increase
in the high-temperature limit. On a small scale the mutual interaction between the particles is relevant. While
in case of a repulsive interaction the stationary solution becomes unstable against short wavelength fluctua-
tions, an attractive interaction leads to an instability for long wavelength fluctuations. The system decays in
domains, the size of which can be estimated as a function of temperature and interaction strength. The model
is also appropriate to study the growth of open bacterial colonies under the influence of a competetive
interaction between the species.
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[. INTRODUCTION tion of particlesD=A is able to play the role of that coun-
terpart in case of an unrestricted occupancy at each lattice

Many systems behave on the phenomenological level egpoint. Thus, the situation is related to the quantum Bose sta-
sentially randomly and, therefore, other approaches for théstics. However, let us point out that our approach is con-
theoretical treatment have to be employed. The randomnesserned completely with stochastically classical systems
resulting from stochastic forces or be intrinsic in the under-obeying a master equation. The Fock-space description is a
lying microscopic theory, inevitably leads to the descriptionmathematical tool applied for a system far from equilibrium
of such systems in terms of probabilities and expectatiorthat is coupled to a heat bath and where the particles are
values[1,2]. The time development of the probability is usu- subject to a pair interaction.
ally found using a master equation. The past years have seen The model could also be of interest for the growth of open
an exciting new development based on the observd8paf  bacterial colonies. The colony grows up when a bacterium is
the close relationship between the Markov generator of thenultiplied inside the system or when it is incorporated from
master equation and a time evolution operator acting on autside. The unlimited increase of the colony is prevented by
many-particle Fock spacf4,5]; for some recent reviews external parameters such as the nutrient concentration and
comparg 6,7]. The new insight has led to a series of remark-the temperature. An additional mutual interaction between
able exact solutions for the stochastic dynamics of interactthe bacteria is also able to favor growth or death processes
ing particle systems; for a recent overview see R&f. De- inside the colony. The model can further be interpreted as a
spite exact results the mentioned method has also beanodel for “precipitation” of matter in space. Starting with
fruitful in an approximating description of other models suchthe empty space coupled to a particle reservoir at tempera-
as the facilitated kinetic Ising system as a candidate foture T the density will be locally enhanced by a random
glassy systemg9—11] or in branching and annihilation ran- deposition of particles and a simultaneous removal of par-
dom walks[12]. Whereas the original papE3], see also Ref. ticles with different rates. Because the occupation number
[13-18, is concerned with a mapping of the master equatiorper lattice site is unrestricted the averaged density is likewise
to a representation in terms of second-quantized bosonic orbitrary. When the deposition and the removal rates are tem-
erators great progress for exact solvable models had begrerature dependent via an Arrhenius law, then the stationary
achieved by mapping to spin-1/2 Pauli operat8% This  distribution is simply the Bose occupation number despite
mapping to spin systems applies to processes where eatlie particles offering a classical behavior. Apparently, the
lattice site can be occupied by only a finite number of par-precipitation of matter in space is supported by an attractive
ticles. Physically, this restriction may be hard-core con-interaction whereas a repulsive interaction is a competing
straints or fast on-site annihilation processes. Obviouslyprocess compared to the kinetic processes discussed above.
such a mapping simulates the exclusion principle for classi- In the present paper such kinds of models are discussed
cal lattice models within a cellular automata. The dynamicdy means of a Fock-space representation of the underlying
of systems under exclusion is often described by spin-flipnaster equation. Moreover the differences from the corre-
and spin-exchange processes. However, the correspondisgonding approach in terms of spin operators is studied in
counterparts in terms of Bose operators are failed. In theletail. The stability of the stationary solution with respect to
present paper we show that the autocatalytic reacfion the spatial fluctuation, originated by an interaction of the
—2A combined with a spontaneous creation and annihilaparticles, is analyzed. The paper is organized as follows.
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First the model is introduced based on the conventional masropy S=(In py(n)) is nothing else a§=(1+(n))In(1+(n))

ter equation approach. The equivalence of the evolution-(njin(n) which is well known from quantum statistics. The

equation to a quantum formulation in terms of Bose operatime dependent probability density can be derived using the
tors will be studied in Sec. Ill where also the differencessolution of Eq.(3). We get

from spin flip are studied. The influence of an additional

interaction of the particles is analyzed in Sec. IV whereas the A=y z-1 .
stability of the system against fluctuation is considered in G(zt)= A—yz )\——yz '
Sec. V. In the last section the relevance of the approach for

reactions, open bacterial colonies, and the precipitation ofvith the relaxation timer=(\—1v) 1. ¥(Y) is an arbitrary

)

matter are discussed. function that is determined through the initial dengit(0))
and all its moments. In the case that the initial density is zero
Il. MODEL AND MASTER EQUATION APPROACH and the higher order moments are uncorrelated, it results in

A. The autocatalytic reaction

Let us consider a chemical autocatalytical reaction that is YY) =

attended by a spontaneous creation and annihilation process,
From here and Ed7) we obtain the probability density to be

1+yY’

A—2A,
(1_e7t/7)n

[1_(7/)\)e—t/7]n+1'

O=A. (1) p(n,t)=ps(n) ®
Whereas the creation of a partiddeand its subsequent dou-
bling to 2A should be realized with the same rage the
spontaneous decak— @ is fulfilled with the rateN. The
master equation for these processes is given by

Notice that we had not been successful in finding a closed
expression of the functioW (y) for different initial condi-
tions. For comparison with the quantum formalism intro-
duced in Sec. Il B the first terms of a Taylor expansion of

ap(n,H=N(n+1)p(n+11)+ ynp(n—1t) W(Y) are given:

—[An+y(n+1)]p(n,t). (2 a¥(0)

W(0)=1, — === y)(n(0))~

Here p(n,t) is the probability density thah particles are
present at time¢. The prefactors or n+ 1, respectively are 29(0)
originated by the number of combinations for the reactions

Eq. (2) can be solved by a probability generating functigh %Y

=2y’ +[(A+5)2=45*K(n(0)) + (X — y)*n?*(0)).

9
G(z)=2 Z"p(m,b),
m B. Quantum approach to nonequilibrium
which obeys ~In this section we introduce shortly the quantum formal-
ism for the master equation that is formally written as
0:G=09,G(1—2)[N—yz]—v(1—2)G. 3
1{G=0,G(1-2)[\A—yz]-y(1-2) () s =L’ p(n.b), 10

The time independent solution is simp8,(z) = (A —7y) (A _ y _ . .
—yz)~* from which one can obtain the stationary probabil-wherep(n,t) is the probability that a certain configuration

ity density on a lattice characterized by a state vector
=(ny,n,, ...,Ny) is realized at time. Here, we consider
A=y [y\" the case of an unrestricted occupancy, ire=0,1,2 ... .
ps(n)= Y X) : @ The occupation numbers are considered as the eigenvalues

_ _ _ of the particle number operator defined by creation operators
Hence the averaged occupation number in the statlonarg(iT or by annihilation operatora; . The problem is to formu-

limit reads late the dynamics in such a way that the possible realizations
1 for the occupation numbers are taken into account explicitly.

(n)= Y _ , (5) The situation in mind can be analyzed in a seemingly com-

A=y expelT)-1 pact form using the master equation in a quantum Hamilton

formalism[2-5,19 (for recent reviews, see Refd.,8]). The
dynamics is determined by the form of the evolution operator
L’, specified below. Within that approagB] the probability
A= exgel2T), y=mu exp—s/2T) (6) distribution p(n,t) i_s related to a state vect¢F(_t)> in a
Fock space according f(n,t) =(n|F(t)). The basic vectors
with a positive activation energy>0. The last relation is |n) are composed of the operatowé and a;. Using the
discussed in more detail in Sec. IIB. The equilibrium en-relation

where the last relation holds when the ratesand y are
introduced via an Arrhenius law, i.e.,
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|F(t)>=; p(n,t)[ny, (12) Lf=§ [Nd;—Dj)+yd/-(1-D))], (19

the master Eq(10) can be transformed into an equivalent where the operaton.\i;andd’r fulfill the commutation rules of
one in a Fock space Pauli operator§d; ,d/]=&;(1-2D;), D;=d]d;. Applying

Eq. (14) the evolution equation for the averaged densities
HF(O)=LIFM), 12 s ! ’

where the operatdr’ in Eq. (10) is mapped onto the opera- _
torL=3|m)L/ (n| in Eq.(12). It should be emphasized that adne) =
the procedure is up to now independent on the realization of _
the basic vectors. Originally, the method had been applied 9{Dr)=—MDp)+¥{1-Dy). (17)
for the Bose cas€3,4,13,2(. Recently, an extension to re-
stricted occupation numbetsvo discrete orientationsvas
proposed2,5,19. Further extensions tp—fold occupation
numbers[11] as well as to models with kinetic constraints
[21] and to systems with two heat baff&2] are possible. As
shown by Doi[3] the average of an arbitrary physical quan- y
tity B(n) can be calculated by the average of the correspond- (n,)sz)\—,
ing operatorB(t), Y

_)\<nr>+ y(1+n),

The evolution equation reflects both competing processes.
Whereas the first term offers the loss due to the annihilation
process the second one gives rise to the gain due to the
reaction. The stationary solutions are given by

Y
(Pr)s=177 (18)
Because the kinetic process does not support any spatial or-
B(t))= 2 p(n,t)B(n)=(s|B|F(t)), (13 dering the stationary solution is a homogeneous one. In case
N of a Bose system the kinetic coefficients should oheyy
which guarantees a stable stationary solution due to the com-
petition among birth and death processes. If the kinetic co-
efficients follow an Arrhenius law introduced by E®) the
a(BY=(s|[B(t),L]|F(1)). (14) ~ system evolutes to a physical accessible positive density. In-
serting Eq.(6) into Eg. (18) the stationary solutions obey
As the result of the procedure, all the dynamical equationgndeed the Bose or the Fermi distribution, respectively.
governed by the classical problem are determined by the
structure of the evolution operatdr and the commutation .
rules of the operators. Ns=(Ny)s= expe/T)—1' <Dr>szexg8/T)+1

with the state functiorfs| = =(n|. The evolution equation for
an operatoB(t) now reads

(19
IIl. ACTIVATED PROCESS
Notice that in the case when the term-b; is absent in Eq.
In this section we will apply the procedure introduced in (15) the Boltzmann distribution is reallzed

the preceding section to find out the realization of the quan- As it had been demonstrated in REJ] for spin systems,
tum evolution operatok, for the master equation introduced the Arrhenius law, Eq(6), can be incorporated in the ana-
by Eq. (2). To be more specific @-dimensional lattice is |ytical formulation by assuming a linear coupling to a heat
assumed where each lattice site can be occupied by an arljath at temperatur@. Following the line proposed in Ref.
trary number of particles. Furthermore, the system is couplefd] we generalize the procedure to an unrestricted occupancy.
to a particle reservoir with an infinite number of particles. The evolution operatok,,, Eq.(15), is modified in terms of

The dynamics consists of random processes where in a st@ose operators at finite temperatures in the following form:
chastic manner particles will be added to the system or re-

moved from it according to the chemical reactions in &g. "

or alternatively as birth and death processes in bacterial colo- Lp= :“E [(1-aj)exp(—BH/2)a;exp BH/2)

nies. The second-quantized evolution operator based on Egs.

(2) and (1Y) is given by +(afa;—aj)exp(— BHI2)a]exp(BHI2)], (20)

_ n. t_ _ where the Hamiltoniai includes a linear coupling to a heat
to=2) [A(@=n)+¥@ - Dd+ny)]. (19 bath and further a mutual interaction between the particles. It
should also be expressed in terms of Bose operators and
Here, the particle number operatoj= al ;@ is introduced  moreover in a diagonalized foritior specification see be-
the eigenvalues of which are unrestncted Hence the operdew). As usual 3 =T is the temperature of the external
torsa anda' satisfy the commutation rulés; 4, M= dij - Lp heat bath, the parameter determines a microscopic time
is the counterpart of the corresponding operaipnhat de- scale that cannot be determined within a mesoscopic ap-
scribes spin-flip processes. In case of a two state model theroach. During the timg.~* one particle can be created and
evolution operator is written in the form, compare, for in- annihilated. Therefore it seems to be reasonable ghag
stance 8], independent of temperature. Notice that E2f) is in accor-
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dance with the principle of detailed balance. In the simplesfor infinite temperature for the spin system. In the Bose case
case of a linear coupling to a heat bath, the Hamiltonian igshe particle density increases and, therefore, the relaxation
given by time increases too. In the low-temperature limit we get

HOZE en;, = Ti=exfd —e/(2T)].
i
The situation in mind is apparently inverse to the corre-
wheree is a single particle energy or an external field that issponding one in conventional quantum statistics. In that case
assumed to be positive. Using the commutation rules foFermi and Bose distribution merge together for high tem-
Bose operators it can be checked easily that(E@. has to  peratures resulting in a Boltzmann distribution and differ in
be replaced by the low-temperature case. Here, we consider particles that
. are subject to stochastic flip processes under the exclusion
pddng) = —exp(Be)(ny) +exp — Be)(1+n,). principle or alternatively, the creation or annihilation pro-
(21) cesses with an unrestricted occupation number per lattice

This relation is in accordance with the replacement sug-s"te' The stochastic process is further restricted for low tem-

gested in Eq(6). The parametek = u exp/2T) character- peratures. Hence one shoulq not exp'ect a S|gn|f|qant differ
: S . ence for classical systems with and without exclusion. How-
izes the annihilation rate. The death process dominates thé . . . .

. . ever, for high temperature each lattice site can be occupied
behavior of the system for low temperatures. For instance

the bacterial colony dies out. The rage- u exp(&/2T) de- With an optimal number of particles. In the Fermi case that is

scribes the growth process that is suppressed at low temper%\e-ahzed with the value “mﬂw<D>S: 1/2 whereas in the

tures. At high temperatures both rates tend to be of the sanf8ose case an infinite occupation is allowed.

order. ForT—c the doubling reactio— 2A is the domi- The approach allows us also to determine easily the local
nating one. As the result of the competing processes the sy§uctuations. Defining

tem evolves to the stationary solution Ef8) that is indeed

the Bose distribution as argued above. The solution of Eq. w;=(n?)—(n;)?, (25
(21) is trivial and leads to an exponential decay with a relax-
ation time we find the evolution equation of the fluctuations that leads
to a stationary solution
1
M Ty P (22 1
2 sinl‘( —) Wg=——"—. (26)
2T * 4 sinf(e/(2T))

which is in accordance with the previous result in Ef).
Proceeding in the same manner for the spin system coupl
to a heat bathiwhich leads to the Fermi distributiprthe

exponential decay gives rise to a relaxation time of the for

For high temperatures the fluctuation strength increases with

\W¢xT? whereas for low temperatures the local density
fluctuations decay exponentialys=exp(—&/T). Notice that
Mhis relation can also be derived using E@8.and (9).

1
MTE= s\ (23 IV. INTERACTION
2 cosVE )

2T As stressed recently23,24] for the completely different

. . ) i i .. problem of a catalytic reaction, the lateral interactions be-

Both relaxation times differ in the high-temperature limit yyeen adsorbed particles should affect the behavior of the
e/T<1 whereas they merge together in the low-temperaturgystem. Therefore we demonstrate in this section for our
limit &/T>1. In particular, one gets for high temperatures model how the quantum approach for a classical stochastical
system can be extended by the inclusion of interaction be-

UTy= I_ L, tween the reactants. Whereas the original evolution operator,

e 24T Eqg. (15), is a local one, a short range density-density inter-

action may lead to a further competitive situation between

1 [ the bacteria, for instance, due to a limited nutrient concen-

MTE=5 7\ a1 tration. The reactants can be affected likewise by an interac-

tion. As the result of such an interaction one should expect

The different behavior of the relaxation timeg and 7; is  the occurrence of spatial correlations. If the particles are sub-

obviously due to different behavior of the averaged occupaject to an attractive interaction the autocatalytic reaction, or

tion numbers. While in case of an unrestricted occupancyhe growth of the colony or the precipitation process could
each lattice site is filled up with an arbitrary number of par-be supported whereas in the opposite case of a repulsive
ticles for high temperatures the averaged occupation numbdorce the decay or death processes are favored. The simplest

for a spin system remains restricted. Consequently, the relaxealization of an interaction can be defined via a density-

ation time in units of the elementary time scaleggoes to 1/2  density correlation with the energy

. (24
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the sign of the interaction strengfh Whereas forJ>0 the
H=2 &nj+2> Jinin;, (27)  reactive process should be supported at least for short dis-
J " tances, a repulsive interactida<0 will lead to an unstable

wheres; is the single particle energy, already discussed bePehavior. The situation in mind can be discussed based on
fore, andJ;; with i #j is the coupling strength between the Eq. (30) by using linear stabllty analysis. Performing Fourier
nearest neighbors. First let us estimate the influence of thiansformation and making the ansatz,
interaction for high temperatures.tfis the averaged particle n(k,t)=n.+y(k.t)
density we find from Eq(19) n=T/e. From here we con- ' sTYL,

clude we find from Eq. (30) an exponential behaviory
H T &2 cexd —u(k)t] where the fluctuation mode obeys the fol-
— ]t i - lowing dispersion relation:
T 1iT0 with Ty, NS (28 g aisp
Q(k)=r+DK?, (31)

where the plus sign belongs to the repulsive and the minus
sign to the attractive interaction. The characteristic temperawhere the mass and the diffusion parametér are given by
ture T will be discussed in the following section.

In case of the inclusion of interaction the resulting evolu- o EM +J_Z inh E(M
tion equation is a nonlinear one, r=esini ——|~Fsin > |
=t angy == (U yexp(,) +((1+n) U7 Hexp(—«;) J E(m e+2J2
— inkh—1 (m) — s
D——fsmh - and E"W=———,

The stationary valu@yg fulfills a self-consistent mean-field-
like equation, see also ER7),

wherej(r) means the sum over all neighbors to the lattice

pointr. Because we are interested in long range correlations 1

in space and time let us neglect all correlations on the mi- M= 1"

croscopic scale. We expect that the system develops a strong expE™ -1

correlated behavior in the large time limit and on a hIrqherwhich is physically accessible E(™>0. Notice that the
resolved spatial scalg|>1, wherel is a lattice size that will

be set to bé=1. Therefore we can write the evolution equa- results are not restricted to a weak interaction. Therefore in

. . ; case of an arbitrary repulsive interactidi»0 the system
tlt:JI’lffOI‘ the averaged density denoted fi(t)) =n(x.t) in becomes unstabley agginst spatial quctuationskéck*
the form =/r/D. Accordingly the system decays in small regions the

size of which is given by

€ 1
with K,=§, Ur=eX[{f%J,jnj>, (29

(32

wton(x,t)=—2n(x,t)nh| k(x)+ %(Vzn(x,t)+zn(x,t))

(33

|1*=2 \/ J .
2T sinl(EM/2)+Jz

+exp{ —k(X)— %[Vzn(x,t)Jrzn(x,t)]] .
(30 The short range repulsive interaction leads to an instability
on a length scalée<|*, whereas on a scale-1* the system

Here we have used the continuum approximation tak|ng intdemains stable. The situation is Complete different in case of
account On|y the lowest order of a gradient expansm'ﬁ, an attractive interactiod<0. Since the diffusion parameter
the number of nearest neighbors adds the interaction D is always positive that guarantees the stability against
strength the sign of which determines the behavior of theéshort wavelength fluctuations, the behavior of the system is
system in a crucial manner. For instance, in the weak interdictated by the sign of the mass terrm Eq. (31). From Eq.
action limitJ/Tng<1 one finds that E(30) leads always to (32) one concludes that the stationary solutianis acces-
a negative diffusion coefficient for a repulsive interaction. Insible at finite temperatures only in the low density limit
the opposite case of an attractive interaction the effectiv@iven by
d_iffusion_ coefficjent is always positiV(_a anq, therefore, that - o2
kind of mteraptlon Sl_Jpports_ the preC|p|Fat|on process. The 0<n.<-2 with To==. (34)
general case is considered in the following section. s 2|J|z

A violation of that condition for a high density leads imme-
diately to a density collapse due to the attractive interaction.
Here we study the stability of the stationary solution In particular, this case would be realized for a zero activation
against spatial fluctuations for an arbitrary interactionenergy. Now, we study the dispersion relation for the fluctu-
strength but with a fixed activation energy= const. As ating mode, Eq(31), within the limited area of validity de-
stressed before, the solution of E§0) depends strongly on fined by Eq.(34). To that aim let us rewrite E(B1) as

V. STABILITY
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2|3|zexp( E(M/2) ergy. Due to the attraction the particles merge together and it
Ns= n Ng, —Ng)(N—ng_) is favorable that more particles surmount the barrier simul-
s taneously. The system offers a tendency for a collapse even

for finite temperatures. Thus, the stability is only guaranteed
4TT0_1. (35) for a smaller density depending on temperature discussed in
g2 this section. Likewise the characteristic temperature should
be considered as an estimation for the situation in mind. The

Equations(34) and (35 offer a positive mass term>0 if  pehavior differs from the corresponding quantum case. In

with  2ng =% \/1+

the stationary solution satisfies the condition that case the Bose condensation temperature depends on the
mass of the boson3,>m~1. Here, we have considered
0<ng<min E,ns ) massless bosonic excitations and hence the “condensation”
€ phenomenon is expected for high temperatures. A more de-

tailed relation between quantum Bose particles and the sto-

If T>T.=To+e the stationary solution is stable in the cpagtic dynamics, discussed here, remains an open problem.

whole accessible region<On,<T,/e whereas in the oppo-
site case of low temperatur@s< T, the stability against spa-
tial fluctuations is only guaranteed in the restricted region
0<ns<ng, . In case of a negative gap<O spatial fluctua-
tions leads to an instability against long wavelength fluctua- In the present paper we have discussed the counterpart of
tions \>1* where the critical wavelength* is defined by @ spin-flip process in terms of Bose operators where a flip
Eq. (33). From Eq.(35) one concludes that this instability Process means a creation or an annihilation of a particle at a
occurs in the low-temperature regirfe< T, where the ac- Certain lattice site. Different from the spins the occupation
cessible stationary density is restricted to the arga<n, ~ Number per lattice site is not restricted. Accordingly the sys-
<Ty/e. Summarizing both cases we get the final result: The{.em must be coupled to an infinite pa}rtlcle reservoir. A par-
stationary solution is achieved in the whole intervat 0 icle ha? to overcome an energy barrier to leave the partlc_le
<To/z and it is stable against fluctuation T, . In the reservoir and to arrange it within the system. If the system is

low-temperature cas&<T, the stationary density is only further coupled to a heat bath it tends to equilibrate. The
c : . . .
stable at a low density-0n.<n,_whereas the high density stationary solution yields an averaged occupation number

) ] . that is realized by the Bose distribution function. The model
casens, <ns<To/e is unstable against fluctuations. The can pe relevant for autocatalytic reactions combined with

VI. CONCLUSIONS

characteristic temperature birth and death processes or for a deposition-desorption pro-
cess. When a particle arrives at a random position on the

E:1+L system it forms a bond with the site, and sticks. Such a

€ 2|13z random local deposition process is realized with a certain

. o ] ) . _ratey whenever at least one particle is already present at that
is originated by the mutual interaction. While a repulsive attice site. The competing process is desorption occurring
interaction between the bosons gives rise to an unstable bt the ratex. The model can also be discussed in relation
havior for wavelength\ <I* at each temperature, an attrac- 1o the restricted growth of a bacterial colony that is influ-
tive interaction leads to an instability against long wave-gnced by external parameters as well as an internal interac-
length fluctuations, however, only in limited temperature-tion of the bacteria. The dynamical process is characterized
density region. Above a characteristic temperatlitethe  py 5 relaxation time that shows a complete inverse behavior
stationary solution is stable in the whole accessible densitgompared to the spin-flip case and to the conventional quan-
region 0<ns<Ty/e whereas belowl; the system remains tym case. If a short range density-density interaction is intro-
stable only in the low density regime<tns<ns <To/e.  duced the repulsive and the attractive interaction give rise to
The results are understandingly from a more heuristic poina complete different behavior. Whereas the repulsive interac-
of view. If the particles are subject to a repulsive interactiontion leads to an instability for short wave fluctuations, the
they tend to maintain a fixed mutual distance. Therefore thattraction offers the tendency to a collapse at finite tempera-
effective energy to overcome the barrier between the partures and for long wave fluctuations. The behavior of the
ticles is greater than the activation eneegyThe short range system differs from the quantum case in a significant manner
repulsive interaction leads to an instability on small lengthdue to the fact that we have nonmassive Bose-like excita-
scale. The valué¢* received by our analysis should be takentions. From here we conclude a similar phenomenon like
as a rough estimation for the size of the domains in whiclBose condensation in the high temperature limit. The analy-
the system decays under the influence of the repulsive intesis can be extended to hopping processes and to a random
action. In case of an attractive interaction the effective enenergy landscape in a manner which had been discussed
ergy to overcome a barrier is smaller than the activation enelsewherd25].
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