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Classical kinetical Bose gas
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An autocatalytic reaction combined with spontaneous creation and annihilation processes of particles are
studied in a quantum formalism of the master equation in a lattice gas representation with unrestricted occu-
pancy. In case the system is activated by a linear coupling to a heat bath the problem can be solved exactly and
the stationary particle density follows the Bose distribution. The relation to spin-flip processes with a restricted
occupancy is discussed. Different from those processes the relaxation time and the density fluctuation increase
in the high-temperature limit. On a small scale the mutual interaction between the particles is relevant. While
in case of a repulsive interaction the stationary solution becomes unstable against short wavelength fluctua-
tions, an attractive interaction leads to an instability for long wavelength fluctuations. The system decays in
domains, the size of which can be estimated as a function of temperature and interaction strength. The model
is also appropriate to study the growth of open bacterial colonies under the influence of a competetive
interaction between the species.
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I. INTRODUCTION

Many systems behave on the phenomenological level
sentially randomly and, therefore, other approaches for
theoretical treatment have to be employed. The randomn
resulting from stochastic forces or be intrinsic in the und
lying microscopic theory, inevitably leads to the descripti
of such systems in terms of probabilities and expecta
values@1,2#. The time development of the probability is us
ally found using a master equation. The past years have
an exciting new development based on the observation@3# of
the close relationship between the Markov generator of
master equation and a time evolution operator acting o
many-particle Fock space@4,5#; for some recent reviews
compare@6,7#. The new insight has led to a series of rema
able exact solutions for the stochastic dynamics of inter
ing particle systems; for a recent overview see Ref.@8#. De-
spite exact results the mentioned method has also b
fruitful in an approximating description of other models su
as the facilitated kinetic Ising system as a candidate
glassy systems@9–11# or in branching and annihilation ran
dom walks@12#. Whereas the original paper@3#, see also Ref.
@13–18#, is concerned with a mapping of the master equat
to a representation in terms of second-quantized bosonic
erators great progress for exact solvable models had b
achieved by mapping to spin-1/2 Pauli operators@8#. This
mapping to spin systems applies to processes where
lattice site can be occupied by only a finite number of p
ticles. Physically, this restriction may be hard-core co
straints or fast on-site annihilation processes. Obviou
such a mapping simulates the exclusion principle for cla
cal lattice models within a cellular automata. The dynam
of systems under exclusion is often described by spin-
and spin-exchange processes. However, the correspon
counterparts in terms of Bose operators are failed. In
present paper we show that the autocatalytic reactionA
→2A combined with a spontaneous creation and annih
1063-651X/2002/65~4!/046116~7!/$20.00 65 0461
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tion of particlesO”
A is able to play the role of that coun
terpart in case of an unrestricted occupancy at each la
point. Thus, the situation is related to the quantum Bose
tistics. However, let us point out that our approach is co
cerned completely with stochastically classical syste
obeying a master equation. The Fock-space description
mathematical tool applied for a system far from equilibriu
that is coupled to a heat bath and where the particles
subject to a pair interaction.

The model could also be of interest for the growth of op
bacterial colonies. The colony grows up when a bacterium
multiplied inside the system or when it is incorporated fro
outside. The unlimited increase of the colony is prevented
external parameters such as the nutrient concentration
the temperature. An additional mutual interaction betwe
the bacteria is also able to favor growth or death proces
inside the colony. The model can further be interpreted a
model for ‘‘precipitation’’ of matter in space. Starting wit
the empty space coupled to a particle reservoir at temp
ture T the density will be locally enhanced by a rando
deposition of particles and a simultaneous removal of p
ticles with different rates. Because the occupation num
per lattice site is unrestricted the averaged density is likew
arbitrary. When the deposition and the removal rates are t
perature dependent via an Arrhenius law, then the station
distribution is simply the Bose occupation number desp
the particles offering a classical behavior. Apparently,
precipitation of matter in space is supported by an attrac
interaction whereas a repulsive interaction is a compe
process compared to the kinetic processes discussed ab

In the present paper such kinds of models are discus
by means of a Fock-space representation of the underl
master equation. Moreover the differences from the co
sponding approach in terms of spin operators is studied
detail. The stability of the stationary solution with respect
the spatial fluctuation, originated by an interaction of t
particles, is analyzed. The paper is organized as follo
©2002 The American Physical Society16-1
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SCHULZ, TRIMPER, AND ARTZ PHYSICAL REVIEW E65 046116
First the model is introduced based on the conventional m
ter equation approach. The equivalence of the evolu
equation to a quantum formulation in terms of Bose ope
tors will be studied in Sec. III where also the differenc
from spin flip are studied. The influence of an addition
interaction of the particles is analyzed in Sec. IV whereas
stability of the system against fluctuation is considered
Sec. V. In the last section the relevance of the approach
reactions, open bacterial colonies, and the precipitation
matter are discussed.

II. MODEL AND MASTER EQUATION APPROACH

A. The autocatalytic reaction

Let us consider a chemical autocatalytical reaction tha
attended by a spontaneous creation and annihilation proc

A→2A,

O”
A. ~1!

Whereas the creation of a particleA and its subsequent dou
bling to 2A should be realized with the same rateg, the
spontaneous decayA→Ø is fulfilled with the ratel. The
master equation for these processes is given by

] tp~n,t !5l~n11!p~n11,t !1gnp~n21,t !

2@ln1g~n11!#p~n,t !. ~2!

Here p(n,t) is the probability density thatn particles are
present at timet. The prefactorsn or n11, respectively are
originated by the number of combinations for the reactio
Eq. ~2! can be solved by a probability generating function@1#

G~z,t !5(
m

zmp~m,t !,

which obeys

] tG5]zG~12z!@l2gz#2g~12z!G. ~3!

The time independent solution is simplyGs(z)5(l2g)(l
2gz)21 from which one can obtain the stationary probab
ity density

ps~n!5
l2g

l S g

l D n

. ~4!

Hence the averaged occupation number in the station
limit reads

^n&5
g

l2g
5

1

exp~«/T!21
, ~5!

where the last relation holds when the ratesl and g are
introduced via an Arrhenius law, i.e.,

l5m exp~«/2T!, g5m exp~2«/2T! ~6!

with a positive activation energy«.0. The last relation is
discussed in more detail in Sec. II B. The equilibrium e
04611
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tropy S5^ ln ps(n)& is nothing else asS5(11^n&)ln(11^n&)
2^n&ln^n& which is well known from quantum statistics. Th
time dependent probability density can be derived using
solution of Eq.~3!. We get

G~z,t !5
l2g

l2gz
CS z21

l2gz
e2t/tD , ~7!

with the relaxation timet5(l2g)21. C(Y) is an arbitrary
function that is determined through the initial density^n(0)&
and all its moments. In the case that the initial density is z
and the higher order moments are uncorrelated, it result

C~Y!5
1

11gY
.

From here and Eq.~7! we obtain the probability density to b

p~n,t !5ps~n!
~12e2t/t!n

@12~g/l!e2t/t#n11
. ~8!

Notice that we had not been successful in finding a clo
expression of the functionC(y) for different initial condi-
tions. For comparison with the quantum formalism intr
duced in Sec. II B the first terms of a Taylor expansion
C(Y) are given:

C~0!51,
]C~0!

]Y
5~l2g!^n~0!&2g,

]2C~0!

]2Y
52g21@~l1g!224g2#^n~0!&1~l2g!2^n2~0!&.

~9!

B. Quantum approach to nonequilibrium

In this section we introduce shortly the quantum form
ism for the master equation that is formally written as

] tp~n,t !5L8p~n,t !, ~10!

where p(n,t) is the probability that a certain configuratio
on a lattice characterized by a state vectorn
5(n1 ,n2 , . . . ,nN) is realized at timet. Here, we consider
the case of an unrestricted occupancy, i.e.,ni50,1,2, . . . .
The occupation numbersni are considered as the eigenvalu
of the particle number operator defined by creation opera
ai

† or by annihilation operatorsai . The problem is to formu-
late the dynamics in such a way that the possible realizat
for the occupation numbers are taken into account explic
The situation in mind can be analyzed in a seemingly co
pact form using the master equation in a quantum Hamil
formalism@2–5,19# ~for recent reviews, see Refs.@7,8#!. The
dynamics is determined by the form of the evolution opera
L8, specified below. Within that approach@3# the probability
distribution p(n,t) is related to a state vectoruF(t)& in a
Fock space according top(n,t)5^nuF(t)&. The basic vectors
un& are composed of the operatorsai

† and ai . Using the
relation
6-2
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CLASSICAL KINETICAL BOSE GAS PHYSICAL REVIEW E65 046116
uF~ t !&5(
ni

p~n,t !un&, ~11!

the master Eq.~10! can be transformed into an equivale
one in a Fock space

] tuF~ t !&5LuF~ t !&, ~12!

where the operatorL8 in Eq. ~10! is mapped onto the opera
tor L5(um&Lmn8 ^nu in Eq. ~12!. It should be emphasized tha
the procedure is up to now independent on the realizatio
the basic vectors. Originally, the method had been app
for the Bose case@3,4,13,20#. Recently, an extension to re
stricted occupation numbers~two discrete orientations! was
proposed@2,5,19#. Further extensions top–fold occupation
numbers@11# as well as to models with kinetic constrain
@21# and to systems with two heat baths@22# are possible. As
shown by Doi@3# the average of an arbitrary physical qua
tity B(n) can be calculated by the average of the correspo
ing operatorB(t),

^B~ t !&5(
ni

p~n,t !B~n!5^suBuF~ t !&, ~13!

with the state function̂su5(^nu. The evolution equation for
an operatorB(t) now reads

] t^B&5^su@B~ t !,L#uF~ t !&. ~14!

As the result of the procedure, all the dynamical equati
governed by the classical problem are determined by
structure of the evolution operatorL and the commutation
rules of the operators.

III. ACTIVATED PROCESS

In this section we will apply the procedure introduced
the preceding section to find out the realization of the qu
tum evolution operatorLb for the master equation introduce
by Eq. ~2!. To be more specific ad-dimensional lattice is
assumed where each lattice site can be occupied by an
trary number of particles. Furthermore, the system is coup
to a particle reservoir with an infinite number of particle
The dynamics consists of random processes where in a
chastic manner particles will be added to the system or
moved from it according to the chemical reactions in Eq.~1!
or alternatively as birth and death processes in bacterial c
nies. The second-quantized evolution operator based on
~2! and ~11! is given by

Łb5(
j

@l~aj2nj !1g~aj
†21!~11nj !#. ~15!

Here, the particle number operatornj5aj
†aj is introduced

the eigenvalues of which are unrestricted. Hence, the op
torsa anda† satisfy the commutation rules@ai ,aj

†#5d i j . Lb

is the counterpart of the corresponding operatorL f that de-
scribes spin-flip processes. In case of a two state mode
evolution operator is written in the form, compare, for i
stance@8#,
04611
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j

@l~dj2D j !1g„dj
†2~12D j !…#, ~16!

where the operatorsd andd† fulfill the commutation rules of
Pauli operators@di ,dj

†#5d i j (122Di), Di5di
†di . Applying

Eq. ~14! the evolution equation for the averaged densit
satisfies

] t^nr&52l^nr&1g^11nr&,

] t^Dr&52l^Dr&1g^12Dr&. ~17!

The evolution equation reflects both competing proces
Whereas the first term offers the loss due to the annihila
process the second one gives rise to the gain due to
reaction. The stationary solutions are given by

^nr&s5
g

l2g
, ^Dr&s5

g

l1g
. ~18!

Because the kinetic process does not support any spatia
dering the stationary solution is a homogeneous one. In c
of a Bose system the kinetic coefficients should obeyl.g
which guarantees a stable stationary solution due to the c
petition among birth and death processes. If the kinetic
efficients follow an Arrhenius law introduced by Eq.~6! the
system evolutes to a physical accessible positive density
serting Eq.~6! into Eq. ~18! the stationary solutions obe
indeed the Bose or the Fermi distribution, respectively.

ns[^nr&s5
1

exp~«/T!21
, ^Dr&s5

1

exp~«/T!11
.

~19!

Notice that in the case when the term 11nj is absent in Eq.
~15! the Boltzmann distribution is realized.

As it had been demonstrated in Ref.@9# for spin systems,
the Arrhenius law, Eq.~6!, can be incorporated in the ana
lytical formulation by assuming a linear coupling to a he
bath at temperatureT. Following the line proposed in Ref
@9# we generalize the procedure to an unrestricted occupa
The evolution operatorLb , Eq. ~15!, is modified in terms of
Bose operators at finite temperatures in the following for

Lb5m(
j

@~12aj
†!exp~2bH/2!ajexp~bH/2!

1~aj
†aj2aj !exp~2bH/2!aj

†exp~bH/2!#, ~20!

where the HamiltonianH includes a linear coupling to a hea
bath and further a mutual interaction between the particle
should also be expressed in terms of Bose operators
moreover in a diagonalized form~for specification see be
low!. As usualb215T is the temperature of the extern
heat bath, the parameterm determines a microscopic tim
scale that cannot be determined within a mesoscopic
proach. During the timem21 one particle can be created an
annihilated. Therefore it seems to be reasonable thatm is
independent of temperature. Notice that Eq.~20! is in accor-
6-3
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SCHULZ, TRIMPER, AND ARTZ PHYSICAL REVIEW E65 046116
dance with the principle of detailed balance. In the simpl
case of a linear coupling to a heat bath, the Hamiltonian
given by

H05(
j

«nj ,

where« is a single particle energy or an external field tha
assumed to be positive. Using the commutation rules
Bose operators it can be checked easily that Eq.~17! has to
be replaced by

m21] t^nr&52exp~b«!^nr&1exp~2b«!^11nr&.
~21!

This relation is in accordance with the replacement s
gested in Eq.~6!. The parameterl5m exp(«/2T) character-
izes the annihilation rate. The death process dominates
behavior of the system for low temperatures. For instan
the bacterial colony dies out. The rateg5m exp(2«/2T) de-
scribes the growth process that is suppressed at low temp
tures. At high temperatures both rates tend to be of the s
order. ForT→` the doubling reactionA→2A is the domi-
nating one. As the result of the competing processes the
tem evolves to the stationary solution Eq.~18! that is indeed
the Bose distribution as argued above. The solution of
~21! is trivial and leads to an exponential decay with a rela
ation time

mtb5
1

2 sinhS «

2TD , ~22!

which is in accordance with the previous result in Eq.~7!.
Proceeding in the same manner for the spin system cou
to a heat bath~which leads to the Fermi distribution! the
exponential decay gives rise to a relaxation time of the fo

mt f5
1

2 coshS «

2TD . ~23!

Both relaxation times differ in the high-temperature lim
«/T!1 whereas they merge together in the low-tempera
limit «/T@1. In particular, one gets for high temperature

mtb.
T

«
2

«

24T
,

mt f.
1

2
2S «

4TD . ~24!

The different behavior of the relaxation timestb and t f is
obviously due to different behavior of the averaged occu
tion numbers. While in case of an unrestricted occupa
each lattice site is filled up with an arbitrary number of p
ticles for high temperatures the averaged occupation num
for a spin system remains restricted. Consequently, the re
ation time in units of the elementary time scalem goes to 1/2
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for infinite temperature for the spin system. In the Bose c
the particle density increases and, therefore, the relaxa
time increases too. In the low-temperature limit we get

tb5t f.exp@2«/~2T!#.

The situation in mind is apparently inverse to the cor
sponding one in conventional quantum statistics. In that c
Fermi and Bose distribution merge together for high te
peratures resulting in a Boltzmann distribution and differ
the low-temperature case. Here, we consider particles
are subject to stochastic flip processes under the exclu
principle or alternatively, the creation or annihilation pr
cesses with an unrestricted occupation number per la
site. The stochastic process is further restricted for low te
peratures. Hence one should not expect a significant dif
ence for classical systems with and without exclusion. Ho
ever, for high temperature each lattice site can be occup
with an optimal number of particles. In the Fermi case tha
realized with the value lim

T→`
^D&s51/2 whereas in the

Bose case an infinite occupation is allowed.
The approach allows us also to determine easily the lo

fluctuations. Defining

wi5^ni
2&2^ni&

2, ~25!

we find the evolution equation of the fluctuations that lea
to a stationary solution

ws5
1

4 sinh2~«/~2T!!
. ~26!

For high temperatures the fluctuation strength increases
T,ws}T2 whereas for low temperatures the local dens
fluctuations decay exponentiallyws.exp(2«/T). Notice that
this relation can also be derived using Eqs.~7! and ~9!.

IV. INTERACTION

As stressed recently@23,24# for the completely different
problem of a catalytic reaction, the lateral interactions b
tween adsorbed particles should affect the behavior of
system. Therefore we demonstrate in this section for
model how the quantum approach for a classical stochas
system can be extended by the inclusion of interaction
tween the reactants. Whereas the original evolution opera
Eq. ~15!, is a local one, a short range density-density int
action may lead to a further competitive situation betwe
the bacteria, for instance, due to a limited nutrient conc
tration. The reactants can be affected likewise by an inte
tion. As the result of such an interaction one should exp
the occurrence of spatial correlations. If the particles are s
ject to an attractive interaction the autocatalytic reaction,
the growth of the colony or the precipitation process co
be supported whereas in the opposite case of a repu
force the decay or death processes are favored. The sim
realization of an interaction can be defined via a dens
density correlation with the energy
6-4
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H5(
j

« jnj1(
i , j

Ji j ninj , ~27!

where« j is the single particle energy, already discussed
fore, andJi j with iÞ j is the coupling strength between thez
nearest neighbors. First let us estimate the influence of
interaction for high temperatures. Ifn is the averaged particle
density we find from Eq.~19! n.T/«. From here we con-
clude

H

T
.16

T

T0
with T05

«2

2uJuz
, ~28!

where the plus sign belongs to the repulsive and the m
sign to the attractive interaction. The characteristic tempe
ture T0 will be discussed in the following section.

In case of the inclusion of interaction the resulting evo
tion equation is a nonlinear one,

m21] t^nr&52^nrUr&exp~k r !1^~11nr !Ur
21&exp~2k r !

with k r5
« r

2T
, Ur5expS 1

T (
j (r )

Jr j nj D , ~29!

where j (r ) means the sum over all neighbors to the latt
point r. Because we are interested in long range correlati
in space and time let us neglect all correlations on the
croscopic scale. We expect that the system develops a st
correlated behavior in the large time limit and on a high
resolved spatial scaleuxu@ l , wherel is a lattice size that will
be set to bel 51. Therefore we can write the evolution equ
tion for the averaged density denoted by^nr(t)&5n(x,t) in
the form

m21] tn~x,t !522n~x,t !nhFk~x!1
J

T
~¹2n~x,t !1zn~x,t !!G

1expH 2k~x!2
J

T
@¹2n~x,t !1zn~x,t !#J .

~30!

Here we have used the continuum approximation taking
account only the lowest order of a gradient expansion,z is
the number of nearest neighbors andJ is the interaction
strength the sign of which determines the behavior of
system in a crucial manner. For instance, in the weak in
action limit J/Tns!1 one finds that Eq.~30! leads always to
a negative diffusion coefficient for a repulsive interaction.
the opposite case of an attractive interaction the effec
diffusion coefficient is always positive and, therefore, th
kind of interaction supports the precipitation process. T
general case is considered in the following section.

V. STABILITY

Here we study the stability of the stationary soluti
against spatial fluctuations for an arbitrary interacti
strength but with a fixed activation energy«5 const. As
stressed before, the solution of Eq.~30! depends strongly on
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the sign of the interaction strengthJ. Whereas forJ.0 the
reactive process should be supported at least for short
tances, a repulsive interactionJ,0 will lead to an unstable
behavior. The situation in mind can be discussed based
Eq. ~30! by using linear stabilty analysis. Performing Fouri
transformation and making the ansatz,

n~k,t !5ns1y~k,t !,

we find from Eq. ~30! an exponential behaviory
}exp@2mV(k)t# where the fluctuation mode obeys the fo
lowing dispersion relation:

V~k!5r 1Dk2, ~31!

where the massr and the diffusion parameterD are given by

r 52 sinhS E(m)

2 D1
Jz

T
sinh21S E(m)

2 D ,

D52
J

T
sinh21S E(m)

2 D and E(m)5
«12Jzns

T
.

The stationary valuens fulfills a self-consistent mean-field
like equation, see also Eq.~27!,

ns5
1

expE(m)21
, ~32!

which is physically accessible ifE(m).0. Notice that the
results are not restricted to a weak interaction. Therefore
case of an arbitrary repulsive interactionJ.0 the system
becomes unstable against spatial fluctuations atk5k*
5Ar /D. Accordingly the system decays in small regions t
size of which is given by

l * 52pA J

2T sinh2~E(m)/2!1Jz
. ~33!

The short range repulsive interaction leads to an instab
on a length scalel< l * , whereas on a scalel . l * the system
remains stable. The situation is complete different in case
an attractive interactionJ,0. Since the diffusion paramete
D is always positive that guarantees the stability aga
short wavelength fluctuations, the behavior of the system
dictated by the sign of the mass termr in Eq. ~31!. From Eq.
~32! one concludes that the stationary solutionns is acces-
sible at finite temperatures only in the low density lim
given by

0,ns,
T0

«
with T05

«2

2uJuz
. ~34!

A violation of that condition for a high density leads imm
diately to a density collapse due to the attractive interacti
In particular, this case would be realized for a zero activat
energy. Now, we study the dispersion relation for the fluc
ating mode, Eq.~31!, within the limited area of validity de-
fined by Eq.~34!. To that aim let us rewrite Eq~31! as
6-5
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ns5
2uJuz exp~E(m)/2!

Tns
~ns1

2ns!~n2ns2
!

with 2ns6
56A11

4TT0

«2
21. ~35!

Equations~34! and ~35! offer a positive mass termr .0 if
the stationary solution satisfies the condition

0,ns,minS T0

«
,ns1

D .

If T.Tc5T01« the stationary solution is stable in th
whole accessible region 0,ns,T0 /« whereas in the oppo
site case of low temperaturesT,Tc the stability against spa
tial fluctuations is only guaranteed in the restricted reg
0,ns,ns1

. In case of a negative gapr ,0 spatial fluctua-
tions leads to an instability against long wavelength fluct
tions l. l * where the critical wavelengthl * is defined by
Eq. ~33!. From Eq.~35! one concludes that this instabilit
occurs in the low-temperature regimeT,Tc where the ac-
cessible stationary density is restricted to the areans1

,ns

,T0 /«. Summarizing both cases we get the final result: T
stationary solution is achieved in the whole interval 0,ns
,T0 /« and it is stable against fluctuation ifT.Tc . In the
low-temperature caseT,Tc the stationary density is only
stable at a low density 0,ns,ns1

whereas the high densit

case ns1
,ns,T0 /« is unstable against fluctuations. Th

characteristic temperature

Tc

«
511

«

2uJuz

is originated by the mutual interaction. While a repulsi
interaction between the bosons gives rise to an unstable
havior for wavelengthl, l * at each temperature, an attra
tive interaction leads to an instability against long wav
length fluctuations, however, only in limited temperatu
density region. Above a characteristic temperatureTc the
stationary solution is stable in the whole accessible den
region 0,ns,T0 /« whereas belowTc the system remains
stable only in the low density regime 0,ns,ns1

,T0 /«.
The results are understandingly from a more heuristic p
of view. If the particles are subject to a repulsive interact
they tend to maintain a fixed mutual distance. Therefore
effective energy to overcome the barrier between the p
ticles is greater than the activation energy«. The short range
repulsive interaction leads to an instability on small leng
scale. The valuel * received by our analysis should be tak
as a rough estimation for the size of the domains in wh
the system decays under the influence of the repulsive in
action. In case of an attractive interaction the effective
ergy to overcome a barrier is smaller than the activation
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ergy. Due to the attraction the particles merge together an
is favorable that more particles surmount the barrier sim
taneously. The system offers a tendency for a collapse e
for finite temperatures. Thus, the stability is only guarante
for a smaller density depending on temperature discusse
this section. Likewise the characteristic temperature sho
be considered as an estimation for the situation in mind. T
behavior differs from the corresponding quantum case.
that case the Bose condensation temperature depends o
mass of the bosonsT0}m21. Here, we have considere
massless bosonic excitations and hence the ‘‘condensat
phenomenon is expected for high temperatures. A more
tailed relation between quantum Bose particles and the
chastic dynamics, discussed here, remains an open prob

VI. CONCLUSIONS

In the present paper we have discussed the counterpa
a spin-flip process in terms of Bose operators where a
process means a creation or an annihilation of a particle
certain lattice site. Different from the spins the occupati
number per lattice site is not restricted. Accordingly the s
tem must be coupled to an infinite particle reservoir. A p
ticle has to overcome an energy barrier to leave the part
reservoir and to arrange it within the system. If the system
further coupled to a heat bath it tends to equilibrate. T
stationary solution yields an averaged occupation num
that is realized by the Bose distribution function. The mod
can be relevant for autocatalytic reactions combined w
birth and death processes or for a deposition-desorption
cess. When a particle arrives at a random position on
system it forms a bond with the site, and sticks. Such
random local deposition process is realized with a cert
rateg whenever at least one particle is already present at
lattice site. The competing process is desorption occurr
with the ratel. The model can also be discussed in relati
to the restricted growth of a bacterial colony that is infl
enced by external parameters as well as an internal inte
tion of the bacteria. The dynamical process is characteri
by a relaxation time that shows a complete inverse beha
compared to the spin-flip case and to the conventional qu
tum case. If a short range density-density interaction is in
duced the repulsive and the attractive interaction give rise
a complete different behavior. Whereas the repulsive inte
tion leads to an instability for short wave fluctuations, t
attraction offers the tendency to a collapse at finite tempe
tures and for long wave fluctuations. The behavior of t
system differs from the quantum case in a significant man
due to the fact that we have nonmassive Bose-like exc
tions. From here we conclude a similar phenomenon l
Bose condensation in the high temperature limit. The ana
sis can be extended to hopping processes and to a ran
energy landscape in a manner which had been discu
elsewhere@25#.
6-6



m

s

a
,

n.

CLASSICAL KINETICAL BOSE GAS PHYSICAL REVIEW E65 046116
@1# N.G. van Kampen,Stochastic Processes in Physics and Che
istry ~North-Holland, Amsterdam, 1981!.

@2# H. Spohn, Large Scale Dynamics of Interacting Particle
~Springer, New York, 1991!.

@3# J. Doi M, J. Phys. A9, 1465~1976!.
@4# P. Grassberger and M. Scheunert, Fortschr. Phys.28, 547

~1980!.
@5# S. Sandow and S. Trimper, Europhys. Lett.21, 799 ~1993!.
@6# R.B. Stinchcombe, Physica A224, 248 ~1996!.
@7# D.C. Mattis and M.L. Glasser, Rev. Mod. Phys.70, 979

~1998!.
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